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Unsteady laminar flow over a rough surface
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Abstract. A model is developed for the unsteady laminar flow of a thin fluid film over a substrate with roughness
of the same order as the film height. The limits of large and small surface resistance and small surface-roughness
are investigated and it is shown that at leading order the classical parabolic form for the velocity profile is retrieved
in all cases. Empirical expressions for the depth-averaged velocity and the ratio of the average to maximum
velocities are investigated and shown to agree with the present theory under certain conditions. The method is
verified by comparison with experiments for steady uni-directional flow over a surface of known roughness.
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1. Introduction

Flow over surfaces where the roughness is of the same order as the fluid height may be
separated into three distinct flow regimes; turbulent, transitional and laminar. The transition
between the three flow regimes occurs, approximately, when the Reynolds number Re = 2000
and 500 [1, 2]. Turbulent flow is the most common in practical situations and has been studied
intensively both experimentally and theoretically (see, for example, [3, 4]). Results for transi-
tional flow are given in [5, 6]. At sufficiently low Reynolds number the flow around and above
the roughness elements will be laminar; see [7, 8]. This is the least studied region for flow
over a very rough surface and will form the focus of the current paper.

The two applications motivating this work are water flow over soil and accreting ice
surfaces. Understanding flow over soil is important for a number of reasons, for example
in modelling erosion, the movement of bacteria and fertiliser; see [9, 10]. Although turbulent
flow is the most common situation in overland flow, laminar flow may also occur. Accreting ice
surfaces are of particular interest to aircraft manufacturers, shipping and power transmission
industries [11–13]. In aircraft applications the water flowing over the rough ice surface will
form a very thin layer, with icing on structures the water flow is generally slow. In both cases
laminar flow is likely to be the dominant form of water motion.

In this paper a theoretical model will be developed to predict laminar flow over a rough
surface. Clearly, the fluid velocity will vary considerably depending on a fluid-particles po-
sition relative to the surface roughness elements. For example, the velocity will be lower in
the vicinity of a peak in the substrate and higher over a smooth section; see [2], [7, Figure 7].
The velocity employed in the following analysis should therefore be considered as an average
over a control area (not to be confused with the average velocity across the film, ua). This
will lead to inaccuracies on a local scale but should provide a reasonable approximation over
a sufficiently large area. This approach has been verified experimentally in a study of flow on
tidal flats and overland flow [14]. During the derivation it will be assumed that the film height
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is greater than the roughness height, i.e., h > k. It is a simple matter to adapt the analysis to
situations where h < k. However, no appropriate experiments have been found to validate this
limit and so this work focusses only on situations where h > k.

Previous theoretical models have dealt with laminar flow over relatively small surface
roughness elements. One approach is to impose a no-slip boundary condition on a substrate
with random roughness and then repeat the calculations to find a converged solution; see [15].
Using an alternative approach [16] shows that the standard no-slip velocity condition on the
solid substrate, u = 0, may be replaced by a Navier slip condition

u = −α
∂u

∂z
. (1)

The slip coefficient, α, is the average roughness height. A similar condition was proposed in
[17] by using an analogy with flow over porous media. However, this approximation is only
valid in the limit α/h → 0, where h is the film height. In the present study the ratio α/h

is non-negligible and applying this condition leads to significant negative velocities near the
substrate. The slip condition is therefore not appropriate when the roughness has the same
order of magnitude as the film height. There is also a body of work which considers in detail
the flow over a single roughness element or obstacle; see, for example, [18, 19] and references
therein. These models correctly capture the local physics but are not practical for dealing with
flow over many roughnes elements.

In experimental studies of flow over a very rough surface two main techniques have been
employed. In the first dye is introduced into the flow and the front of the plume tracked either
visually or with a fluorometer [2]. In the second, saline solution is introduced and the plume
position monitored by measuring the conductivity [3]. With both methods it is simplest to
measure the maximum velocity, um. The average velocity is then estimated via a correction
factor β, where ua = βum; see, for example, [5]. In laminar flow over a smooth surface
β = 2/3; in flow over a rough surface empirical estimates are required. Experimental heights
are frequently inferred from h = Q/ua , where Q is the known fluid flux/unit width. Errors
in the estimation of um or β will therefore be reflected in an inaccurate prediction for the film
height.

In laminar flow conditions the average velocity of a thin layer of fluid on a solid surface is

ua = 8gh2 sin θ

Kν
, (2)

where θ is the angle of inclination and ν the kinematic viscosity [20]. This is the appropriate
form of the Darcy-Weisbach equation for flow in a wide channel. The coefficient K = 24 for
flow over a smooth surface and increases as the roughness increases [21]. In reality K is an
unknown function of ua and Equation (2) is therefore impractical for predicting the average
velocity [22]. The determination of β and K are therefore questions of practical interest.

A series of experiments for laminar, transitional and turbulent flow over a rough surface
are described in [23]. Film heights and velocities are obtained via the saline technique. In the
transitional and turbulent regimes the saline mixes well with the bulk fluid. In the laminar
regime the saline falls to the bottom and so the measured velocities are below the true values.
In [24] a model is developed for steady, uni-directional flow on a rough surface. Results are
presented and compared with existing experimental results and a number of approximate em-
pirical formulae. When comparing with results obtained via the saline technique, it is shown
that the reported film heights are beyond the possible range for laminar flow and the saline
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Figure 1. Schematic of problem showing a thin fluid film (length-scale � height-scale) flowing over surface
roughness elements

technique is therefore inappropriate for measuring laminar flow. This is described in more
detail in Section 3.4.

A more complex study of the laminar flow regime was carried out by Phelps [7]. In this
work small aluminium spheres (of diameter less than 0·025mm) were introduced into the
water. The particles were viewed through a rotating prism with the aid of a microscope.
This effectively provided a strobe system where the particle velocities could be related to the
rotational speed. The depth of the particles was determined by the depth of focus of the micro-
scope. This method allows velocity profiles, u(z), and height to be accurately determined. It
is clearly impractical for field trials, but it does provide excellent results for comparison with
analytical and other experimental methods. Typically the results of Phelps indicate steeper
velocity profiles than for smooth flow and β ∈ [0·54, 0·65] for Re ∈ [36, 500]. In Section 5
the current theory is tested against these experimental results.

Further experimental work on laminar flow over a rough surface may be found in [3, 5, 7,
8, 23, 25, 26]. Guy et al. [9] study sediment-laden laminar flow. Lawrence [4] summarises a
number of experimental results covering turbulent, transitional and laminar flow.

In the following section the theoretical model is developed. As is standard for thin-film
laminar flow, the problem reduces to solving a single equation for the film height. Expressions
for the fluid velocity and flux are obtained in terms of the film height, analytical expressions
are then found for the average and maximum velocities. In Section 3, for large and small flow
resistance, simple expressions for the velocity profiles, β and K are given and bounds for the
steady-state film height are obtained. Velocity profiles are also compared with the theoretical
model of Miksis and Davis [16]. In Section 5 the maximum velocity prediction is compared
with the experimental results of Phelps.

2. Mathematical model

2.1. GOVERNING EQUATIONS

The problem configuration is shown in Figure 1. The fluid flows with velocity u = (u, v,w)

under the action of gravity. The substrate is defined by the plane z = 0. The fluid has height
h and the average roughness height is k. Provided the fluid flow is laminar and remains
sufficiently thin, the Navier-Stokes equations may be approximated by

∂2u

∂z2
− f (u) = ∂p

∂x
− g1 + O(ε2, ε2Re) = −�1 + O(ε2, ε2Re) (3)



114 T.G. Myers

∂2v

∂z2
− f (v) = ∂p

∂y
− g2 + O(ε2, ε2Re) = −�2 + O(ε2, ε2Re) (4)

∂p

∂z
εg3 + O(ε2, ε2Re) (5)

The function f represents the resistance due to surface roughness; its specific form is dis-
cussed below. The dimensionless gravity components (g1, g2, g3) = (ĝ · x̂, ĝ · ŷ, ĝ · ẑ), where
ĝ is the unit vector in the direction of gravity. The terms �i involve the pressure gradient
and gravity. The pressure gradient acts to drive fluid spreading in the z-direction. On a flat
surface this is the dominant driving force. However, on a slope it is typically an order of mag-
nitude smaller than the gravitational force in the (x, y)-direction; see, for example, [27]. For
completeness the pressure gradient in the x and y directions will be retained in the following
analysis; however, in general it is negligible in comparison to g1, g2.

The variables are related to their dimensional counterparts by

x′ = Lx y′ = Ly z′ = Hz = εLz

u′ = Uu v′ = Uv w′ = εUw

p′ = Pp t ′ = L/U t ,

(6)

where dimensional terms are denoted with a prime. The height and length scales are H and
L, the aspect ratio ε = H/L � 1. The velocity scale U = ρgH 2/µ is chosen so that gravity
in the x- or y-direction balances the viscous resistance. On an almost horizontal surface
the appropriate choice is U = ρgH 3/µL and the gravity term in (5) balances the pressure
gradient. The pressure scale P = µU/ε2L is the standard one for lubrication theory.

Equations (3), (4) describe the velocity field. The terms on the left are the retarding forces,
namely viscous resistance and resistance due to surface roughness, The terms on the right-
hand side are the driving forces of pressure gradient and gravity. Above the roughness ele-
ments, z > k, f = 0. Within the rough region it is standard to assume that the resistance
(or drag) to laminar flow is proportional to the square of velocity. In soil applications this
is discussed in [4, 7]. This quadratic relation holds over a wide range of velocities. In the
present study the velocity variation is relatively small, in which case the resistance may be
well approximated by a linear relation, f ≈ ω2u, for an appropriate choice of resistance
coefficient ω. The value of ω will depend on the amount and form of surface roughness and
must be determined by comparison with experiments. The determination of ω and typical
values are discussed in Section 5. In the following this linear relation between resistance and
velocity will be imposed,

f (u) = ω2u, 0 ≤ z ≤ k,

= 0, k ≤ z ≤ h.
(7)

This simplification is the key to the following analysis. It permits analytical expressions to be
obtained for the velocity, fluid flux and height. However, it should be borne in mind that such
a simplification must limit the range of results; for example, if ω is determined from a given
set of experiments over a range of velocities (or fluxes), care must be taken when using the
analytical results for velocities (fluxes) outside of this range.

The fluid pressure may be determined by integrating Equation (5) to give

p = pa + εg3(z − h), (8)
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where pa is the ambient pressure and g3 represents the gravitational component in the z-
direction. The terms �i may now be expressed as

�1 = −εg3
∂h

∂x
− g1 (9)

�2 = −εg3
∂h

∂y
− g2. (10)

The fluid velocity is obtained by integrating (3), (4) twice, after substituting for the resistance
f from Equation (7) :

u = u1 = a1 cosh ωz + a2 sinh ωz + �1

ω2
, 0 ≤ z ≤ k,

= u2 = −�1
z2

2
+ a3z + a4, k ≤ z ≤ h,

(11)

u = v1 = b1 cosh ωz + b2 sinh ωz + �2

ω2
, 0 ≤ z ≤ k,

= v2 = −�2
z2

2
+ b3z + b4, k ≤ z ≤ h,

(12)

The constants of integration in (11) and (12) are determined by applying the following bound-
ary conditions. At the substrate z = 0 there is no-slip, at the free surface z = h there is no
shear stress

u(0) = v(0) = 0,
∂u

∂z

∣∣∣∣
z=h

= ∂v

∂z

∣∣∣∣
z=h

= 0. (13)

At the interface between the two flow regions the velocity and shear stress must be continuous

[u] = [v] = 0,

[
∂u

∂z

]
=

[
∂v

∂z

]
= 0, (14)

where [ ] denotes the jump across the boundary z = k. In the following analysis, to avoid
unnecessary repetition, only the x-components will be dealt with. The y-components can be
obtained by substituting �2 for �1. Applying the boundary conditions leads to

a1 = −�1

ω2
, a2 = −�1

ω cosh ωk
(k − h) + �1

ω2
tanh ωk,

a3 = �1h, a4 = −�1

ω2

1 − cosh ωk

cosh ωk
− �1k

2
(2h − k) − �1

ω
(k − h) tanh ωk.

The corresponding velocity is

u1 = −�1

ω2
[cosh(ωz) − 1] − �1

ω2 cosh(ωk)
[ω(k − h) − sinh(ωk)] sinh(ωz), z ≤ k

u2 = −�1

2
[(z − k)(z − k − 2(h − k))] z ≥ k

− �1

ω2 cosh(ωk)
(1 − cosh(ωk) + ω(k − h) sinh(ωk)) .

(15)
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The velocity can be seen to depend on gravity (through �1), the film and roughness heights
and the resistance coefficient, ω. The velocity u2 takes a classical parabolic profile. The second
term on the right-hand side is a non-negative constant representing the velocity at the transition
z = k.

Finally, provided the fluid is incompressible and w is continuous at the interface, z = k,
the standard mass balance is

∂h

∂t
+ ∇ · Q = 0; (16)

see [27] for further details. The flux Q = (Qx,Qy) is the integral of the velocity across the
film,

Qx = −�1

ω2

[
tanh(ωk)

ω
− h + h − k

cosh(ωk)

]
− �1

3
(k − h)3−

�1

ω2 cosh(ωk)
[1 − cosh(ωk) + ω(k − h) sinh(ωk)] (h − k).

(17)

Hence the problem is governed by a quasilinear equation for the film height h.
When the system loses fluid, for example through evaporation or flow into the soil, or gains

fluid through incoming droplets or condensation, the governing equation is modified to

∂h

∂t
+ ∇ · Q = E. (18)

When E < 0 this represents a rate of fluid loss; E > 0 represents a rate of fluid gain. This
type of equation has been studied in the context of condensation and evaporation in [28–31]
and for small rain droplets in [24]. For flow into a porous substrate Equation (18) will be valid
when the velocities u, v � 1 at the porous boundary z = 0; see [32]. For incoming droplets
Equation (18) holds when the droplets are small and the droplet momentum is significantly
less than the film momentum. If h < k, the velocities and flux are obtained in a similar manner
as above, namely by integrating (3), (4) with 0 ≤ z ≤ h subject to (13). Theoretically this is
a simple exercise and of practical interest; however, no experimental data has been found to
verify this regime and so the following work will focus only on situations where k < h.

3. Limiting cases

In this section the limiting velocity profiles will be investigated for the three physically inter-
esting limits, namely, when the resistance is large and small and when the roughness height is
small. In the first case, ω → ∞, the flow below z = k will be extremely slow and therefore
the majority of fluid must flow above this region. When ω → 0, the fluid velocity above and
below z = k will approximate the classical parabolic profile. When k → 0, there will be a
small amount of flow below z = k and the majority of the fluid will again flow with a parabolic
velocity profile. In Sections 3.4, 3.5 bounds will be found for the steady-state film height and
the limiting expressions used to determine approximate expressions for the coefficient K in
Equation (2) and the correction factor β = ua/um.
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3.1. LARGE-RESISTANCE LIMIT

Simply substituting ω → ∞ in the expression for u1 shows that u1 ∼ �1/ω
2 + O(ω−3),

provided k � ω−1. This will hold over most of the domain. In the vicinity of the transition
region, z ∈ [k − ζ/ω, k], (where ζ = ω(k − z) is the scaled co-ordinate in the vicinity of
z = k), a further term becomes important, viz.

u1 = −�1

ω
(k − h) exp(−ζ ) + �1

ω2
+ O(ω−3). (19)

Above z = k:

u2 = −�1

2
(z − k) (z − k − 2(h − k)) − �1

ω
(k − h) + �1

ω2
+ O(ω−3). (20)

So, when ω → ∞, the velocity over most of the region z < k is O(ω−2). Just below the
transition region, z → k−, an additional term becomes important and the velocity increases
to O(ω−1). This matches the velocity as z → k+ given by Equation (20). The leading-order
velocity above the transition is exactly that which would occur on a smooth solid surface
located at z = k. The higher-order corrections account for the fact that the fluid velocity at the
transition point, at O(ω−1), is non-zero.

3.2. SMALL-RESISTANCE LIMIT

In the limit of small resistance ω → 0 the velocity becomes

u1 = −�1

2
z(z − 2h) − �1

24

[
z4 − 4hz3 − 4k3z + 12hk2z

]
ω2 + O(ω4) (21)

u2 = −�1

2
z(z − 2h) − �1k

3

24
[8h − 3k] ω2 + O(ω4). (22)

To leading order in ω the velocities u1 = u2 are the classical expressions for flow on a
smooth surface. The difference only occurs at O(ω2) where u1 has a retarding term (provided
h > k) with a quartic variation in z. The value of the retarding function increases from zero at
the substrate to a constant value at z = k which matches the constant at O(ω2) in u2.

3.3. SMALL ROUGHNESS LIMIT

When k → 0, the velocity is

u1 = �1

ω2
(1 − cosh(ωz) + ωh sinh(ωz)) − �1ωh

2
sinh(ωz)k2 + O(k3), (23)

u2 = −�1

2
z(z − 2h) + O(k3). (24)

In fact, since the u1 expression holds for z ≤ k, the first term in u1 is strictly O(k) and the
second is O(k3). As expected, above z = k the parabolic velocity profile is retrieved. At the
interface the velocity is of the order of the roughness height, u1 = u2 = �1hk + O(k2).

The slip coefficient model of Miksis and Davis [16] leads to a velocity profile

uMD = −�1

2

(
z2 + 2h(α − z)

)
. (25)
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Figure 2. Comparison of velocity profiles predicted by (a) Equation (15) and (b) Equation (25)

This is valid for small surface roughness k/h � 1. The slip coefficient α is stated to be
the average amplitude of the roughness height. Taking α = k/2 means that Equations (24)
and (25) only agree to leading order. The next non-zero term in (24) is −�1ω

2hk3/3. Taking
α = ω2k3/3 forces the two velocity expressions to agree to O(k3). Further, the slip coefficient
now depends on the resistance caused by the substrate as well as the roughness height. This
seems a more plausible situation, since the fluid flow must depend on the density of obstacles
and their microscale roughness and not simply the average amplitude.

In Figure 2 the velocity profiles predicted by the current theory, Equations (15), and the
model for flow over small surface roughness of Miksis and Davis, (25), are compared. The
conditions correspond to one of the experimental cases given in Table 1, where Re = 145.
Curve (a) shows the fluid velocity predicted by the current method, with h set to the experi-
mental value h = 0·5325 and ω = 6·7 (this is determined in Section 5 to be the appropriate
roughness coefficient for the surface). It can be seen that the fluid velocity increases monoton-
ically from zero at the substrate to a maximum value u(h) = 1·24. The maximum velocity
measured in the experiment is ue = 1·19, hence the current method leads to an error of 4·6%.
Curve (b) is the velocity predicted by Equation (25) with α = k/2 = 0·146. The maximum
velocity is uMD(h) = 1·0, which is a 15·7% error. The velocity decreases monotonically
from this value and becomes negative when z < 0·175, at the substrate u(0) = −1·22. This
velocity profile is clearly physically unrealistic indicating that Equation (25) is inappropriate
for predicting the velocity over a surface with significant roughness.

3.4. BOUNDS ON THE FILM HEIGHT

For unidirectional flow in the steady-state the film height is determined by integrating (18),

Qx = Ex + Qi (26)

where Qi is the initial flux and Qx is given by Equation (17). Taking the small ω expansion
of (17) and rearranging gives the film height approximation when h > k

h = h0 + �1k
3

[
− k2

20
+ kh

4
− h2

0

3

]
ω2 + O(ω3), (27)

where h0 = (3(Ex + Qi)/�1)
1/3. For small k the same leading-order height, h0, is obtained.

For large ω
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h = h0 + k − tanh(ωk)ω−1 + O(ω−2). (28)

Taking the leading-order expressions for the flux for these limiting cases shows the steady-
state film height for unidirectional flow on a rough surface varies between

3

√
3(Ex + Qi)

�1
≤ h ≤ k + 3

√
3(Ex + Qi)

�1
. (29)

The lower bound is the standard height predicted for flow on a smooth surface. The upper
bound shows that on a very rough surface the height is simply the sum of the roughness height
and h0. This demonstrates that when the roughness is large the fluid flows above the rough
region and the substrate effectively becomes z = k. In [24] it is shown that (when E = 0) the
film heights generated by the saline technique described in [23] fall outside of this range, thus
proving that the saline technique is not appropriate for laminar flow. All the laminar results
of Phelps [7] and Woo and Brater [8] (who do not use the saline technique) lie within this
range, except for a single result which is most likely incorrect and is discussed in more detail
in Section 5.

3.5. APPROXIMATE EXPRESSIONS FOR K AND β

In the introduction it was mentioned that the average velocity ua is frequently approximated
by Equation (2). In non-dimensional form this is

ua = 8h2 sin θ

K
. (30)

On a smooth surface K = 24; experiments show that K increases with increasing roughness.
However, as pointed out in [22], the functional dependence of K is unknown and therefore
(30), is impractical for predicting the average velocity.

In the limit of small roughness k → 0 the average velocity is given by

ua = Qx

h
= �1

3

[
h2 + ω2hk3

] + O(k4). (31)

When gravity drives the flow down the surface �1 ≈ −g1 = sin θ , where θ is the angle of
inclination of the surface to the horizontal. Comparison of Equations (30) and (31) shows that,
when the roughness height is small, the correct functional dependence for K is

K = 24

(
1 − ω2k3

h

)
+ O(k4). (32)

Hence the correction to K is O(k3) when the roughness height is small. Provided ω is not too
large (ω2 � h/k3) , taking K = 24 will therefore provide a good approximation when k � 1.
The small ω expansion leads to a deviation from 24 only at O(ω2)

K = 24 + 6

5

k3
(
3 k2 − 15 kh + 20 h2

)
h3

ω2 + O
(
ω3

)
. (33)

In the limit of large ω the current theory predicts

K = 24

(
1 − k

h

)−3

− 72 tanh(ωk)

ωh

(
1 − k

h

)−4

+ O(ω−2). (34)
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The above equations provide explicit expressions for the functional dependence of K. K

can be seen to depend on both the roughness and film heights. In the experimental situations
discussed in the following section ω ∼ 7, for which Equation (34) is the appropriate limit (in
fact this approximation is valid for ω � 3). In agreement with experimental results, for a fixed
film height, Equation (34) shows that K is an increasing function of the surface roughness;
see [21]. For a fixed roughness height K decreases with the film height.

The correction factor discussed in the introduction, ua = βum, has been found in experi-
mental studies to vary between 0·2 and 0·65 for laminar flow, depending on the surface and
flow conditions, see for example, [3, 5, 7, 23, 25, 26]. The maximum velocity, um, occurs at
the free surface and is determined by substituting z = h in Equation (15). The average velocity
is simply the flux, defined by Equation (17), divided by the height. The correction factor may
therefore be determined explicity from β = Qx/(umh). For large ω the correction factor turns
out to be

β = ua

um

= 2

3

(
1 − k

h

) [
1 + tanh(ωk)

ω
h

(
1 − k

h

)−1
]

+ O(ω−2). (35)

The leading-order term indicates that for large ω the correction factor β ∈ [0, 2/3] for k ∈
[0, h] in accordance with the experimental data. Obviously, the theory is questionable when
the roughness height is approximately the same as the film height and so the lower bound may
be inaccurate. For small ω

β = 2

3
− 1

90

k3
(
9 k2 − 30 kh + 20 h2

)
h3

ω2 + O
(
ω3

)
. (36)

The O(ω2) correction is negative until k = 0·92h. This indicates again that β ≤ 2/3 over
most of the acceptable range, but as the roughness height increases above 0·92 h the validity
of results is questionable. This provides another reason for focussing on flows where k < h.
For small k the correction factor deviates from 2/3 only at order k3 and is always below this
value:

β = 2

3
− 2

9

ω2

h
k3 + O(k4). (37)

4. Unsteady analysis

4.1. SOLUTION BY THE METHOD OF CHARACTERISTICS

The two-dimensional form of Equation (18) may be written as

∂h

∂t
+ p(h)

∂h

∂x
= E, (38)

where

p(h) = �1

ω2C

[{
(2 + ω2k2)C − 2ωkS − 2

} − 2(ω2kC − ωS)h + ω2Ch2]
and C = cosh(ωk), S = sinh(ωk). Equation (38) is quasilinear and may be solved by the
method of characteristics. For an initially flat film, with height hi , a particle at position (xi, hi)

at t = 0 will subsequently have position
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Figure 3. Comparison of film heights for (a) ω → 0, (b) ω = 5 and (c) ω → ∞.

h = hi + Et, (39)

x = xi + �1

Eω2C

[ {
(2 + ω2k2)C − 2ωkS − 2

}
(h − hi) − (ω2kC − ωS)(h2 − h2

i )

+1

3
ω2C(h3 − h3

i )

]
.

(40)

This solution holds for all x and t .
In the limit of small ω (or small k) the particle height equation is unaffected, the leading-

order x co-ordinate is

x = xi + �1

3E
(h3 − h3

i ). (41)

Similarly, in the limit of large ω the leading order x-coordinate is

x = xi + �1

3E
((h − k)3 − (hi − k)3). (42)

In Figure 3 three curves are shown. These represent the progress of a particle initially at
(xi, hi) = (0, 1) when �1 = 1·5, E = 0.1, k = 0·3 for t ∈ [0, 10]. Curve (a) represents
the small ω limit of Equation (41), curve (b) is the ω = 5 result and curve (c) is the large ω

result. When the resistance is small, the fluid particle moves rapidly down the slope and, in
this scenario, ends at x ≈ 35. As the resistance increases, the particle moves more slowly,
hence the curve for large ω ends at x ≈ 23. The final height is the same in all three cases.
However, by the time the fluid particle in curve (c) has reached x = 35, it will be at height
h = 2·24. This gain in height is necessary to maintain the same flux since the resistance slows
the flow rate.

4.2. LINEAR STABILITY

In the absence of resistance it is well known that flow driven solely by gravity on the surface
of a smooth plane is stable to linear perturbations for all values of the wave number. The same
is true in the current situation. If we look for solutions to (38) of the form

h = h0(t) + h1(t)e
iαx, (43)
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where h1 � h0, the base state is h0 = Et+hi and hi is the initial film height. The perturbation
h1 is specified by

h1 = A exp (−iαP (h0)) , (44)

where

P(h0) =
∫

P(h0)dt = �1

ω2 cosh(ωk)

[{
(2 + ω2k2) cosh(ωk) − 2ωk sinh(ωk) − 2

}
t+

ω sinh(ωk) − ω2k cosh(ωk)

E

(
(hi + Et)2 − h2

i

) + ω2 cosh(ωk)

3E

(
(hi + Et)3 − h3

i

) ]
.

(45)

Hence waves are propagated down the slope and the film is stable to linear perturbations.
When the system loses mass, E < 0, the wave speed decreases with time. When E > 0,
the wave speed increases with time. In the limit E = 0 the wave speed is constant; further,
allowing ω → 0 provides the classic solution

h = h0 + A exp
(
iα(x − �1h

2
i t)

)
. (46)

Of course, perturbing the film will introduce non-negligible curvature and hence surface
tension effects. Including surface tension into the model leads to

h = h0 + A exp
(
iα(x − F(h0)) − Ch3

0α
4t

)
, (47)

where C is the inverse capillary number. Unlike gravity, which propagates the wave, surface
tension acts to reduce the wave height and therefore stabilises the film.

5. Model validation

In all of the following examples the height-scale H = 4mm and the velocity scale U =
10cm/s. A series of experiments for uni-directional, steady laminar flow is described in Phelps
[7]. The problem is therefore described mathematically by Qx = Qi , where Qx is specified by
Equation (17) and Qi is measured. No fluid is lost or gained at the substrate or free surface so
E = 0. The rough surface was prepared by attaching spherical particles of diameter 1·17mm
onto a nominally smooth surface (the non-dimensional roughness height is therefore k =
0·2925). Water was then poured down the slope at a rate Qi . Table 1 contains a summary
of the experimental results where the maximum velocity was measured. The columns show
the Reynolds number, the gravity term �1, the measured height he, the value of ω obtained
by solving Equation (17) with h = he, the measured maximum velocity ume, the maximum
velocity um, (obtained by substituting for �1, k, ω and setting z = h in Equation (15)) and the
percentage difference 100(um −ume)/ume. The Reynolds number quoted in Table 1 is slightly
different to that quoted by Phelps. It seems likely that Phelps uses the formula Re = uah/ν

since, if the simpler formula Re = Qi/ν is used, this indicates that the viscosity ν varies
between 6·8 × 10−7 and 9·6 × 10−7m2/s. The fluid viscosity is unlikely to change this much
during the experiments, hence the Reynolds number given in Table 1 is calculated using Re =
Qi/ν, where Qi is the flux quoted by Phelps and ν is taken as 10−6m2/s.

With the exception of the first result the agreement is extremely good. It seems likely
that some error has occurred in obtaining this first result, since it appears as an outlier in
the full table of experimental data in Phelps. Further, of the 30 results presented by Phelps,
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Table 1. Comparison of predicted maximum velocity with
experimental value.

Re �1 he ω ume um % error

34 1·30 0·565 0·01 0·256 0·220 −14·2
34 0·75 0·8375 7·2 0·165 0·178 7·9
84 0·75 1·08 6·8 0·305 0·329 8·0

142 0·75 1·2575 6·5 0·451 0·469 4·1
145 15·68 0·5325 7·0 1·189 1·214 2·1
314 7·18 0·825 6·95 1·661 1·660 −0·04

390 3·73 1·06 6·83 1·561 1·562 0·07

466 2·41 1·25 5·75 1·475 1·529 3·7

where Re ≤ 500, this is the only one where the film height falls outside the bounds given
by Equation (29). In general, the % error is worst at low flow rates. This may be partially
explained by the measurement technique. To determine velocity profiles Phelps introduced
spherical aluminium particles, with diameter d =0·025mm, into the flow. The maximum rate
at which these particles will sink is determined by the balance between gravity and viscous
resistance,

us ≈ 1

18
d2 ρa − ρw

µ
g,

where ρa and ρw are the particle and water density and µ is the dynamic viscosity. Substituting
the appropriate values leads to us ≈ 0·58mm/s. Now consider a film of height 2mm flowing
over a smooth surface with a maximum velocity of 3cm/s. If the particles are introduced 5cm
above the measuring point, the maximum distance they will drop below the surface when
they reach the measuring point is 0·97mm. At this depth the velocity is 2·3cm/s and the mea-
surement error is therefore of the order 25%. The error will rapidly decrease as the velocity
increases. For example, with a maximum velocity of 10cm/s the error drops to 2·5%. It is
therefore not surprising that the agreement between the current theory and the experimental
results improves as the velocity increases. Of course this statement only holds in the laminar
regime, below Re = 500. The final result, with Re = 466, is approaching this transition and
so shows a slight increase in the error. It is likely that this error will continue to increase until
the transition value is reached, at which point the theory is no longer valid.

Neglecting the first result, the average value for ω is 6·7. Employing this value to calculate
the maximum velocity leads to an error of less than 1% in all cases when compared to the
value of um given in Table 1. It may therefore be deduced that ω = 6·7 is a good estimate
for the resistance coefficient of this particular surface. In fact, it appears that the result is not
very sensitive to the choice of ω. For example, in the case Re = 84, substituting for h and k in
Equation (15) (while setting z = h to provide the maximum velocity), varying ω by a factor
of 2, from 4 to 8 leads to only a 16% change in the maximum velocity prediction. Practically
this means that just a few experiments could be carried out to determine ω and hence describe
a given surface.

Finally, Phelps [7, Figure 7] shows a set of three experimental pictures for the velocity
profile through the film for flow above, near to and far from a roughness element. The experi-
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Figure 4. Comparison of theoretical, Equation (15), (solid line) and experimental velocity profiles [7] (data points)
and a least-squares fit to the experiments (dashed line)

mental data for the results labelled test 1 are shown in Figure 4. The circles show the velocity
measured above an element, note that the velocity is zero on top of the element, z = 0·2925.
The crosses represent flow near to the element and the squares flow far away from the element.
The squares lie approximately on the quadratic curve defined by Equation (24). The dashed
line is a least-squares fit of all the data points to a quadratic curve. Above z = 0·4 the data
points are all close to the dashed line. Below this value there is a greater spread in the data.
The data represented by the circles shows that the velocity reaches zero at z = 0·2925. The
squares show the velocity reaching zero at z = 0. The cross data points lie between these
values. The solid line is the curve predicted by Equation (15). For z > 0·5 it lies close to the
least-squares approximation. Below this value it decreases more rapidly. This is due to the fact
that it is an average of the velocities and must account for the zero velocity near the roughness
height. The closeness of the solid curve to the data points above the roughness and the fact that
it lies between the data points below the roughness height indicates that the current approach
does indeed provide a reasonable approximation for the average flow characteristics.

6. Conclusions

A method has been developed for three-dimensional laminar thin film flow on a rough sub-
strate. Three physically interesting limits to the model have been investigated for uni-directional
flow and used to provide simple expressions for the velocity, bounds on the film height, the
coefficient K and the correction factor β. The unsteady model was analysed and a solution
found by the method of characteristics. The governing equation was also shown to be stable
to linear perturbations.

It has been shown that for large ω the empirical formula for average velocity, (2), can
provide a reasonable approximation. The previous drawback to this formula was the unde-
termined variable K. The current work provides an expression for K and shows that as ω

decreases the simple form of Equation (2) is no longer appropriate. However, in the limit
ω → 0 the formula will once again be valid. An explicit formula has also been given for
the correction factor β. For laminar flow β = 2/3. For flow over a rough surface the current
method shows β ∈ (0, 2/3] in agreement with experimental results.

Comparison with experimental data shows that the predictions for the velocity profile
are very good. The worst agreement occurs at low fluid velocities, when the experimental
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measurements are most likely to be inaccurate. The velocity profile through the film also
shows good qualitative agreement with the average of a series of velocity profiles obtained
experimentally.

The model involves one unknown parameter, ω, which quantifies the resistance of the
surface to the flow. This parameter arises through the assumption that the resistance can be
approximated by a linear form. The value of ω cannot be determined from the model and
therefore at least one steady-state, unidirectional experimental result is required. Measuring Q

and h and substituting the values in the flux expression (17) provides an equation to determine
ω (which must be solved numerically). Alternatively, if the maximum velocity and h are
measured, then solving (15), after substituting z = h, determines ω. This was the method
employed in Section 5. If the film height is difficult to measure accurately, the maximum
velocity and flux may be measured and then (17) and (15) (again with z = h) may be solved
simultaneously to determine the height and roughness coefficient. Numerical tests indicate
that the velocity profile is not very sensitive to the choice of ω. The method is therefore
quite robust for practical applications. However, it is still sensible to carry out a number of
experiments and find an average value for ω.

Whilst the model appears to work well for the types of flow considered in this paper, its use
will be limited in practical situations. In the future it is intended to develop the model along
the following lines:

– allow for non-negligible velocity at the substrate,
– allow for the effect of rain on the momentum balance,
– incorporate substrate erosion and particle transport,
– investigate models where k > h.
– relate ω to the various other measures of surface roughness.

In this way it is hoped to provide a practical tool for modelling overland fluid flow.
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